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ABSTRACT

This paper presents a hierarchical approach to single image

intrinsic decomposition based on non-local L0 sparsity. In

contrast to previous studies using heuristic methods to well-

define the ill-posed problem, our approach is able to effec-

tively construct sparse, non-local and multiscale reflectance

dependencies in an unsupervised manner, thus is less depen-

dent on the chromaticity feature and more accurately captures

the global reflectance correlations. Besides, we impose ho-

mogenous smoothness prior and scale constraint in our model

to further improve the decomposition accuracy. We formu-

late the decomposition as a quadratic minimization problem,

which can be efficiently solved in closed form. Extensive ex-

periments show that our approach can successfully extract the

shading and reflectance components from a single image, and

outperforms state-of-the-art methods on benchmark dataset.

Besides, our approach can achieve comparable results with

user-assisted methods on natural scenes.

Index Terms— Intrinsic image decomposition, hierarchi-

cal approach, non-local prior, L0 sparsity

1. INTRODUCTION

Intrinsic image decomposition targets at separating an in-

put image into material-dependent component and lighting-

dependent component, known as reflectance and shading, re-

spectively. It was originally proposed by Barrow and Tenen-

baum [1] to describe the intrinsic characteristics of scenes. S-

ince each component represents a different physical element,

intrinsic image decomposition can benefit a lot of tasks both

in computer graphics and computer vision, e.g. colorization

and re-lighting [2], image segmentation [3], and object recog-

nition. However, this problem still remains a challenging task

due to its severe ill-posed nature: given an input image, the
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Fig. 1. Single image intrinsic decomposition by hierarchical

L0 sparsity. (a) shows some examples of non-local L0 sparse

constraint at the original scale. (b) and (c) are the decom-

posed reflectance and shading components of our approach.

(d) illustrates the generation process of hierarchical L0 sparse

dependencies.

number of unknowns is twice the number of equations. To

resolve the ambiguity, some early studies utilize images with

different illumination conditions [4, 5], and achieve high qual-

ity results. But the strict input requirement limits the applica-

tion of these multi-image based approaches. In recent years,

intrinsic image decomposition from single image has drawn

significant attentions.

Relation to prior work. Given a single image, previ-

ous studies have proposed different priors on reflectance and

shading components. Retinex model [6] is the most widely

used prior that analyzes local variations on image chromatic-

ity. It assumes that small variations are caused by shading

change and large variations are caused by reflectance change.

This assumption is intuitively simple yet may not hold in im-

ages of real scenes, and binary classification is often unreli-

able. Training-based methods [7, 8] have been developed to

attribute the image variations to shading or reflectance. How-

ever, the training convergence is input dependent and it is d-

ifficult to train all inclusive rules. Recently, Shen et al. [9]

represented the reflectance value of one pixel by a weighted

summation of its neighbors in a local window, and formulated

intrinsic image decomposition as a minimization problem.



While the above approaches utilize local priors to resolve

the inherent ambiguity, some recent studies show that non-

local priors can help to reserve the global consistency and sig-

nificantly improve the decomposition results. Shen and Yeo

imposed a global sparsity prior of reflectance in [10], which

assumes a small number of colors in the reflectance compo-

nent. They formulated this prior as a total-variation cost on

the set of reflectance values in the image. Zhao et al. [11] pro-

posed a non-local reflectance constraint through texture anal-

ysis: if distant pixels have similar local texture structure, they

are expected to have the same reflectance. This constraint is

imposed by clustering pixels of the chromaticity image into

groups. It is noticed that most previous methods depended on

the chromaticity feature, which is not always reliable for im-

ages of real scenes, and employed heuristic ways to make the

ill-posed decomposition well-defined.

In recent years, L0 sparsity has been used in many graph-

ics and vision tasks. Xu et al. [12] developed L0 gradi-

ent minimization to implement image smoothing, which can

globally control the number of non-zero gradients to approx-

imate prominent image structures. Later, they extended the

L0 gradient sparsity to solve the problem of image deblur-

ing [13], and achieved significant improvement both in effi-

ciency and accuracy. Wang et al. [14] proposed a graph-cut

approach to image segmentation by building an affinity graph

based on L0 sparse representation of features. Experimental

results on benchmark datasets show that their method can cap-

ture semantically meaningful regions and achieve competitive

segmentation results compared to state-of-the-art techniques.

The success of applying L0 sparsity in these recent tasks in-

spires us to utilize it in intrinsic image decomposition.

Our contribution. In this paper, we propose a hierar-

chical approach based on non-local L0 sparsity for intrinsic

image decomposition. There are two major contributions of

this work. First, we effectively construct sparse and non-local

pairwise dependencies on reflectance component in an unsu-

pervised manner. For each pixel of the given image, we con-

struct a sparse representation by solving the L0 minimization

problem, based on which global correlations are built to for-

mulate a reliable prior on reflectance component. Second, the

hierarchical approach makes intrinsic image decomposition

much less dependent on the chromaticity feature. Our ap-

proach utilizes a coarse-to-fine process to propagate the cor-

relations of reflectance from bottom to up image layers. Ex-

cept the bottom layer, all the other layers use the combination

of the decomposed reflectance propagated from the previous

layer and chromaticity feature as the initial reflectance com-

ponent. Experiments on benchmark dataset show that our ap-

proach helps to preserve the global consistency of the shading

and reflectance component. Moreover, less dependence on

chromaticity feature makes our approach more robust to im-

ages of real scenes. Comparisons with state-of-the-art tech-

niques demonstrate the superior performance of our approach

both in decomposition quality and perception.

2. OUR APPROACH

2.1. Formulation

Let I represent the input image, S and R are its shading com-

ponent and reflectance component, respectively. The intrinsic

decomposition can be modeled as I = S + R in logarithmic

space, where for simplicity I , S and R represent their log val-

ues. We define a new energy function to obtain the intrinsic

images from a single image:

F (S,R) = fs(S) + fr(R) + fa(S). (1)

Here, fs(S), fr(R) and fa(S) formulate local homogenous

smoothing constraint of shading, non-local L0 sparse con-

straint of reflectance and global scaling constraint.

Specifically, following the common Retinex constraint,

the local homogenous smoothing constraint assumes that the

change of shading between neighboring pixels should be s-

mall. That is to say, neighboring pixels with similar intensity

values share similar shading values. We define fs(S) as

fs(S) =
∑
i↔j

wS
ij(Si − Sj)

2, (2)

where i ↔ j denotes a pair of neighboring pixels i and j.

Si and Sj represent their shading values. wS
ij measures the

similarity between neighboring pixels i and j, given by:

wS
ij = e−(Yi−Yj)

2/σ2
i (3)

where Yi is the intensity value of pixel i, and σ2
i is the inten-

sity variance in a neighbourhood. We can then construct the

shading similarity matrix WS = {wS
ij} for image I .

We formulate the non-local L0 sparse constraint of re-

flectance based on the assumption that a natural image can

be well-defined by a small set of colors. Accordingly the re-

flectance of a given pixel can be represented sparsely by a

small set of pixels in the image. We define fr(R) as

fr(R) =
∑
i∼j

wR
ij(Ri −Rj)

2, (4)

where Ri is the reflectance of pixel i, and i ∼ j denotes a

pair of distant pixels. We formulate sparse representation of

reflectance as a L0 minimization problem. By solving the

sparse representation of reflectance component, we can con-

struct global pairwise correlations, which can be referred as

similarity metric wR
ij of reflectance for distant pixel pair (i, j).

The specific definition of wR
ij will be presented in 2.2.

As pointed out in [11], there is a scale ambiguity between

reflectance and shading components. If R∗ and S∗ are ratio-

nal decomposition results, R∗ + k and S∗ − k are also ratio-

nal for any scalar factor k. To solve this ambiguity, we add

scaling constraint on shading component to ensure brightest

pixel(s) to have unit shading value, which is defined as:

fa(S) =
∑
i∈B

S2
i . (5)



where B represents the set of brightest pixel(s) in image I .

2.2. Non-local L0 sparse constraint of reflectance

For a given input image I with N pixels, we represent the fea-

ture of a pixel by concatenating the three channel reflectance

values, which are initialized by chromaticity, at nearby pixels

within a local window of size K. The feature set of all pixels

is denoted as F = {Xi}Ni=1, where Xi is the feature vector of

pixel i and its dimension is 3K2.

Based on the assumption mentioned in 2.1, the reflectance

of a given pixel can be sparsely represented by the other pixels

in the image. For each pixel i, we achieve the sparse repre-

sentation by solving the following L0-minimization problem:

min
αi

‖Xi −Diαi‖22 s.t . ‖αi‖0 ≤ τ, (6)

where Di = [X1, . . . , Xi−1, Xi+1 . . . , XN ] is the sparse dic-

tionary for pixel i, αi ∈ R
N−1 is the coefficient vector for

sparse representation of Xi over Di. The L0 norm ‖αi‖0
returns the number of non-zero coefficients in αi, and the

parameter τ controls the representation sparsity. The set of

coefficient vectors for all pixels is denoted as α = {αi}Ni=1.

This L0 minimization problem can be solved by Orthogonal

Matching Pursuit (OMP) algorithm [15], which achieves the

best linear representation of Xi on dictionary Di.

The non-zero coefficients in αi provide correlations of

pixel i with other pixels, based on which various similarity

metrics have been defined [14, 16]. In this paper, we use the

Normalized-Residual to measure the similarity of reflectance

for pixel pair (i, j), which is defined as following:

wR
ij =

‖Xi −Diα
j
i‖22

‖Xi‖22
, (7)

where

αj
i (l) =

{
0, if l = j, l = 1, ..., N − 1,

αi(l), otherwise.
(8)

By this definition, the more similar pixel i and pixel j are,

the larger αi(j) will be, which results in larger wR
ij . Similar

to WS , we construct the reflectance similarity matrix WR =
{wR

ij} for all pixel pairs of image I .

This L0 sparse representation for reflectance componen-

t can help to achieve the non-local correlation for all pixel

pairs in the image, which encourages the global consisten-

cy to intrinsic image decomposition. Despite the rationality

and effectiveness of L0 sparse representation, there are two

problems of working on the original image: first, the sparse

dictionary is always very large which results that the solving

process is time-consuming; second, the initialization of re-

flectance is absolutely dependent on the chromaticity feature.

To overcome these two problems, we propose a hierarchical

model utilizing a coarse-to-fine process, as will be specified

in the next section.

2.3. Hierarchical L0 sparse constraint of reflectance

For image I , we build an image pyramid PI = {Ik}Mk=1, giv-

en the downsampling ratio κ and the number of hierarchy M ,

where Ik represents the k-th image layer in PI from up to bot-

tom. Here, the bottom layer is right the original image I . Sim-

ilarly, we construct a chromaticity pyramid PC = {Ck}Mk=1,

where Ck is the corresponding chromaticity image of Ik.

For image layer I1, we initialize the reflectance com-

ponent R̂1 with chromaticity C1. Based on R̂1, we build

the feature set F1 = {X1
i }N

1

i=1 and the sparse dictionary

D1 = {D1
i }N

1

i=1 for all pixels of I1, where N1 represents

the number of pixels in I1. By solving the set of coefficien-

t vectors α1 = {α1
i }N

1

i=1 using Eq.(6), we can construct the

reflectance similarity matrix WR1

. Besides, the shading sim-

ilarity matrix WS1

can also be constructed as mentioned in

2.1. Considering non-local L0 sparse constraint, local ho-

mogenous smoothing constraint and scaling constraint, we

decompose I1 into the reflectance component R1 and shad-

ing component S1 based on Eq.(1). The solving process will

be illustrated in detail in 2.4.

For image layer Ik(1 < k ≤ M), we initialize the re-

flectance component R̂k as following:

R̂k = λCk + (1− λ)Rk−1
↑ , (9)

where Rk−1
↑ represents the upsampling reflectance compo-

nent of Rk−1 with ratio κ. Based on R̂k, we build feature set

Fk for all pixels of Ik. In order to reduce the dictionary size

effectively, we construct sparse dictionary Dk in a manner d-

ifferent from D1. For each pixel j in image Ik, denoted as Ikj ,

we find the corresponding pixel Ik−1
j∗ in Ik−1 by downsam-

pling (green point in Ik−1 in Figure 1(d)). Then, we build

the set of correlated pixels of Ik−1
j∗ by identifying the non-

zero coefficients in αk−1
j∗ . Denote this correlated pixel set as

Gk−1
j∗ (red points in Ik−1 in Figure 1(d)). For each pixel in

Gk−1
j∗ , we find the corresponding local patch with a window

size of κ in image Ik by upsampling, and the set of all these

corresponding local patches is denoted as Hk
j (blue patches in

Ik in Figure 1(d)). We use all the pixels in Hk
j to construc-

t the sparse representation dictionary Dk
j for Ikj . Then, we

solve the coefficient vector set αk for Fk over Dk and build

the reflectance similarity matrix WRk

. Combining the shad-

ing similarity matrix WSk

, we decompose image Ik into the

shading component Sk and reflectance component Rk .

By this hierarchical model, the size of sparse dictionary

can be effectively reduced, and the decomposition algorith-

m can be significantly speeded up. Moreover, the reflectance

component decomposed at low layer can refine the initializa-

tion of reflectance component of high layer, which makes the

algorithm more robust to images of real scenes and helps im-

prove the decomposition quality.



Algorithm 1 Hierarchical Intrinsic decomposition

Input: image I , down/up-sampling ratio κ, hierarchy num-

ber M , sparsity τ , alpha-blending weight λ.

Initialization: PI = {Ik}Mk=1 and PC = {Ck}Mk=1;

for k = 1 to M do
if k is equal to 1 then
R̂k ← Ck;

else
R̂k ← λCk + (1− λ)Rk−1

↑ ;

end if
Get Fk and Dk based on R̂k;

Get αk by solving Eq.(6);

Get WRk

using Eq.(7), get WSk

using Eq.(3);

Get Sk using Eq.(11)-(14), get Rk = Ik − Sk;

end for
R ← RM , S ← SM ;

Output: Reflectance component R, shade component S;

2.4. A closed-form solver

Since we can represent reflectance component R by I and

S, i.e. R = I − S, the objective function F (S,R) can be

simplified as following:

F (S) =
∑

i↔j

wS
ij(Si −Sj)

2 +
∑

i∼j

wR
ij(ΔIij −Si +Sj)

2 +
∑

i∈B
S2
i

(10)

where ΔIij = Ii−Ij . Obviously F (S) is a quadratic function

with respect to shading component S. We can represent this

function in a standard quadratic form as: 1
2s

�As− b�s+ c.

Through mathematical deduction, A has a form as follows:

A = 4L(WS∗) + 4L(WR∗) + 2B. (11)

Here, WS∗ = 1
2 (W

S +WS�
) is a symmetric matrix, where

WS�
is the transposition of WS . WR∗ is defined in a similar

way. L(WS∗) and L(WR∗) compute the Laplacian matrix

from WS∗ and WR∗, respectively. B is a diagonal matrix

with Bii = 1 if Si ∈ B, otherwise, Bii = 0.

As we know, the Laplacian matrix is semi-positive de-

fined, so are L(WS∗) and L(WR∗). Matrix B, which has

non-negative diagonal elements only, is also semi-positive.

Therefore, their linear combination A is a semi-positive ma-

trix. The vector b is given by

b(i) =
N∑
j

wR
jiΔIji +

N∑
j

wR
ijΔIij . (12)

c is a constant, which is:

c =
N∑
i

N∑
j

wR
ijΔI2ij . (13)

It is well-known that if A is a symmetric and positive-defined

matrix, the quadratic function has a unique global minimum

which is the solution of the linear system:

As = b. (14)

This yields a closed-form solution to the intrinsic image de-

composition problem defined in Eq.(10), which can be effec-

tively solved by conjugate gradient algorithm. The complete

algorithm of our approach is summarized in Algorithm 1.

3. EXPERIMENTAL RESULTS

We first test our approach on the benchmark MIT dataset pro-

vided by [19]. The MIT dataset contains the ground truth of

intrinsic image decompositions for three categories, including

artificially painted surfaces, printed objects, and toy animal-

s. We quantitatively evaluate the decomposition quality by

computing the Local Mean Squared Error (LMSE). In our ex-

periments, we compare our approach with two state-of-the-art

algorithms for automatic intrinsic image decomposition from

a single image: the conventional color Retinex [17], which is

reported to have the best performance among existing meth-

ods that use local constraints, and the closed form solution

using texture analysis [11] which is one of the latest works

adopting sparse global constraints.

We display the decomposition results of one example of

each image category in Table 1. Here, GT denotes the ground

truth, CR denotes the color retinex algorithm, and CFS de-

notes the closed form solution [11]. We can see that both CFS

and our method effectively separate the reflectance from the

lighting in both “panther” and “turtle” examples, while CR

fails to distinguish the two components. In “cup1”, our shad-

ing result has no pattern, quite similar to that of the ground

truth. Obviously, our approach outperforms other algorithms

both in decomposition accuracy and perception.

We quantitatively evaluate the images in the MIT dataset

and the results are shown in Table 2. Among the test images,

our approach yields the lowest scores in 10 examples. We al-

so compute the average LMSE score, and get 0.021 for our

approach, lower than CR with 0.030 and CFS with 0.025. In

addition, our approach can achieve high performance on some

cases that chromaticity feature does not work well, e.g. “tur-

tle”, “frog2”, and “teabag1”. This shows that our algorithm is

less dependent on the chromaticity feature, which can benefit

the intrinsic image decomposition.

Besides the benchmark MIT dataset, we also compare our

approach on natural images with two state-of-the-art user-

assisted methods [9, 18], which exploit three kinds of inter-

actions, i.e. reflectance-constant scribbles, shading-constant

scribbles and fixed-illumination scribbles, as extra constraints

to well-define the intrinsic decomposition problem. As shown

in Figure 2, our approach can successfully preserve the global

consistency of shading and reflectance components for natu-

ral scenes, and is able to automatically achieve comparable

decomposition results with the interactive methods [9, 18].



Table 1. Decomposition results comparison of different approaches on three images of the MIT dataset

Images
panther cup1 turtle

GT

CR [17]

LMSE = 0.011 LMSE = 0.007 LMSE = 0.069

CFS [11]

LMSE = 0.006 LMSE = 0.010 LMSE = 0.037

Ours

LMSE = 0.003 LMSE = 0.003 LMSE = 0.023

Table 2. Decomposition results comparison of different approaches on all images of MIT dataset

box cup2 deer dinosaur frog1 frog2 paper1 paper2 raccoon squirrel sun teabag1 teabag2

CR 0.013 0.011 0.041 0.035 0.066 0.071 0.004 0.004 0.015 0.072 0.003 0.041 0.023

CFS 0.005 0.005 0.045 0.026 0.051 0.069 0.008 0.005 0.004 0.074 0.002 0.042 0.017

Ours 0.007 0.004 0.042 0.028 0.050 0.046 0.002 0.005 0.004 0.073 0.003 0.020 0.026

4. CONCLUSIONS

In this paper, we propose a hierarchical model to solve the

intrinsic image decomposition problem. Our core is a novel

non-local L0 sparse prior to preserve the global consistency.

It is based on the assumption that the reflectance value of a

pixel can be sparsely represented by other pixels in the im-

age. Different from previous studies using heuristic ways to

make the decomposition problem well-defined, our approach

can construct non-local pairwise dependencies automatically,

moreover, it is less dependent on chromaticity feature. Com-

bining homogenous smoothing prior on shading component

and scaling prior, we formulate the intrinsic image decompo-

sition problem as the minimization of a quadratic function,

which can be solved in closed form with the standard con-

jugate gradient algorithm. Evaluations on benchmark MIT

dataset show that our approach outperforms state-of-the-art

techniques both in decomposition accuracy and perception.

In addition, our approach can automatically achieve compar-

ative results with user-assisted approaches on natural scenes.
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