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ABSTRACT

In this paper, we focus on co-intrinsic decomposition, a new

problem that performs intrinsic decomposition on a pair of

images simultaneously, which share the same foreground

with arbitrarily different illuminations and backgrounds. We

specifically demand the common foreground across different

images to share same reflectance values. For the purpose of

efficiency and feasibility, we perform the co-intrinsic decom-

position at superpixel-level and propose a uniform approach

to automatically derive non-local reflectance relationships vi-

a unsupervised L0 sparsity between superpixels from intra-

and inter-images. We present a unicolor-light-based intrin-

sic model, from which we construct a non-local L0 sparse

co-Retinex model that imposes feasible constraints on shad-

ing, reflectance and environment light, respectively. The co-

intrinsic decomposition is finally modeled as a quadratic min-

imization problem that leads to a fast closed form solution.

Extensive experiments show plausible results of our approach

in extracting common reflectance components from multiple

images. We also validate the benefits of our results in boost-

ing the accuracy of image co-saliency detection.

Index Terms— Co-intrinsic images decomposition, L0

sparsity, superpixels, unicolor-light, quadratic minimization

1. INTRODUCTION

Intrinsic image decomposition is the problem of separating an

image into a reflectance layer and a shading layer [1], which

can benefit many computer vision and graphic applications

like material alteration, relighting, segmentation and objec-

t tracking. Mathematically, the intrinsic model represents an

input image I as the pixelwise product of the reflectance R
and the shading S, i.e. I = S · R, which has unknowns

of twice the number of the equations. To resolve the severe

ill-posedness, state-of-the-art methods have proposed various

types of local constraints [2, 3, 4] and global sparsity con-
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Fig. 1. The first row is the input image pair “Kite”. The

second row is two reflectance images obtained by state-of-

the-art single image intrinsic decomposition method[6]. The

last row is the coherent reflectance images obtained using the

proposed co-intrinsic decomposition. The left column show

the histogram cosine similarity of foreground objects.

straints [5, 6], or rely on user interactions [7]. On the oth-

er hand, some works incorporate additional information from

multiple registered images of the same scene under differen-

t illumination conditions, including [8] that assumes a fixed

viewpoint and [9] which considers different viewpoints.

However, there exist many computer vision tasks that de-

mand the suppression of the variances caused by differen-

t lighting and imaging conditions. The typical application-

s are image co-segmentation [10, 11] and co-saliency detec-

tion [12], in which the images share the same foreground yet

with arbitrarily different illuminations and backgrounds. In

this paper, we address this new problem, which we call co-



intrinsic images decomposition, of performing joint intrin-

sic decomposition on a pair of images simultaneously. We

require the reflectance values of the common foreground to

be consistent across different images, regardless of the vary-

ing illumination conditions, different viewpoints and back-

grounds.

Note that an image pair here may not come from the same

scene as in [8, 9]. Intuitively, one naive solution to this prob-

lem is to conduct intrinsic decomposition separately for the

two images. However, clearly this naive solution does not

consider the same foreground constraint into, and hence can-

not guarantee consistent reflectance values for the common

objects across different images. One example is demonstrated

in Fig. 1(b), which independently exploits the state-of-the-art

single image intrinsic decomposition method [6] on each im-

age. It is noted that the reflectance values of the foreground

object deviate from each other in the image pair.

To solve the co-intrinsic images decomposition problem,

we propose a simple yet effective approach using unsuper-

vised non-local L0 reflectance sparsity at superpixel level.

To the best of our knowledge, our work is the first try for

co-intrinsic decomposition of multiple images with the same

foreground and different backgrounds and illuminations. In

our approach, we first present a unicolor-light-based intrinsic

model, which accounts for the global change of color tones in

two images. Based on it, we construct a co-Retinex model that

integrates four criteria together to constrain the co-intrinsic

model, which contains feasible constraints on shading, re-

flectance and environment light. For the purpose of efficiency

and to obey the gradient sparse prior of reflectance, we rep-

resent the reflectance component of each image as a set of

superpixels, and develop a uniform approach to automatically

derive non-local reflectance relationships within each single

image and across different images. The decomposition re-

sult is further obtained by solving a superpixel (reflectance)

and pixel (shading) hybrid quadratic minimization problem,

which has a fast closed form solution.

We demonstrate our approach on several real-world image

pairs, with visibly apparent illumination changes and differ-

ent backgrounds. The plausible results are obtained in ex-

tracting common reflectance components from an image pair.

In addition, we validate the effectiveness of our approach in

the context of image co-saliency detection, yielding promis-

ing improvement to the accuracy.

2. RELATED WORK

Intrinsic image decomposition was first proposed by Barrow

and Tenenbaum [1] specifying the task of separating an im-

age into shading and reflectance components. For single im-

age intrinsic decomposition, the Retinex [2] is one of the most

successful model that assumes large local gradients attribute

to the reflectance change and small local gradients attribute to

the shading change. The reflectance can then be obtained by

integrating the thresholded gradient field. Color retinex mod-

el extends the retinex algorithm by considering chromaticity

gradients along with brightness gradients in color images. As

reported by [13], color retinex is one of the best intrinsic de-

composition methods that use local priors.

Instead of using binary threshold in the Retinex, Tap-

pen et al. [14] trained an SVM classifier to discriminate

the reflectance gradients from shading gradients. According

to [13], it empirically tended to overfit the training data. Be-

sides automatic decomposition, Bousseau et al. [7] imposed a

local planar constraint of the reflectance and used overlapping

local windows to propagate user guidance.

In addition to local priors, color sparsity prior [15] that

assumes natural scenes are dominated by a small number

of material colors has been adopted in many recent work-

s [16, 6]. For instance, Shen and Yeo [5] applied a total-

variation cost on the set of reflectance values within the im-

age. Zhao et al. [6] constructed a global sparsity constraint us-

ing texture analysis, requiring local texture patches belong to

several clusters. In addition, the intrinsic image decomposi-

tion problem is less constrained when using additive informa-

tion through multiple images of the same scene with different

illuminations [8]. Laffont et al. [9] used an image collection

of different viewpoints and illuminations of the same scene to

construct 3D points and match pixels in different images.

In all the state-of-the-art intrinsic decomposition methods,

a fundamental problem is to eliminate the ill-posedness and

well-define the problem. Thus, generally speaking, one key

problem in intrinsic decomposition is to seek proper priors,

either data-driven or heuristic, about the desired reflectance

and shading components.

3. OUR APPROACH

The proposed co-intrinsic decomposition aims at simultane-

ously processing a pair of images. Different from the reg-

istered images used in [9], our input image pair shares the

same foreground yet each with arbitrary background, differ-

ent viewpoints and varying illuminations. To handle these

characteristics, in the following, we first present a unicolor

lighting based intrinsic model which accounts for the varying

tones, then we propose a co-Retinex model that takes local s-

mooth constraint, model constraint and non-local L0 sparsity

constraints on the image pair into consideration.

3.1. The unicolor-based intrinsic model

As we know, the shading is the joint effect of the object’s

geometry and the environment lighting. Despite the lighting

direction, the environment lighting in the two images of a pair

can be quite different in color tones. To suppress the variation

of color tones, we assume that the shading can be formulated

as the product of a global environment lighting le, which is

constant for all the pixels in one image, and a local shading



component M , which varies pixel by pixel. Let I be an input

image, and p denotes one pixel. The shading Sp for pixel p is

mathematically defined as:

Sp = leMp, (1)

where the environment lighting le is a RGB color vector, and

Mp is a non-negative value representing the magnitude of per-

ceived illumination.

Based on the unicolor lighting, the intrinsic image model

is given by Ip = leMpRp, where Rp denotes the reflectance

of pixel p. Taking the logarithm at both sides yields:

Ip = le +Mp +Rp, (2)

where for simplicity, we reuse the symbols to represent their

log values. Recalling the conventional intrinsic model Ip =
Sp + Rp, ours includes one more variable le to reflect the

global color tone.

3.2. Co-retinex model

Considering two images in a pair, the shading or reflectance

of “neighboring” pixels within one image and across two im-

ages are subject to various constraints. It is noticed that the

“neighboring” pixels do not only refer to the neighbors in a

local window, they also refer to the correlated distant pixels

within single image and across images. We formulate the co-

intrinsic images decomposition problem as the minimization

of the following objective function:

E(le,M,R) = Ec(le,M,R)+λmEm(M)+λrEr(R)+λeEe(M).
(3)

Here, Ec is a term to incorporate the intrinsic model con-

straint. Em is a local term to formulate the shading smooth-

ness constraint. Er represents the non-local L0 sparsity con-

straint on the reflectance values of superpixels from intra-

and inter-images. We further add Ee to constrain the bright-

ness scale. λm, λr and λe are positive weights, and we set

λm = 10, λr = 100, and λe = 1000 in our implementation.

Also note that for simplicity, the notation of these objective

functions uses one symbol, e.g. le, to represent the corre-

sponding variables from two images, e.g. l1e and l2e .

Before describing the definitions of these functions, we

have to point out the number of unknowns is twice the num-

ber of equations for single image intrinsic decomposition. To

make the computation practical, we propose to represent the

reflectance R at superpixel level, due to the retinex assump-

tion that reflectance differences between adjacent pixels are

small. The superpixels are constructed for each image via the

SLIC algorithm [17].

Model constraint. In our model, we minimize the three

components le, M and R simultaneously. Hence we force a

model constraint where the combination of the three compo-

nents is close to the original pixel value. It is defined as:

Ec(le,M,R) =
∑

k

∑

p∈Ik

(Ikp − lke −Mk
p −Rk

u(p))
2, (4)

where u(p) represents the superpixel that pixel p belongs to.

Shading smoothing constraint. According to the retinex

assumption, the shading value varies smoothly within a local

image window. Hence, we define Em(M) as:

Em(M) =
∑

k

∑

p∼q

(Mk
p −Mk

q )
2, (5)

where p ∼ q encodes the 4-connected relationship of pixels

in one image.

Non-local L0 sparse reflectance constraint. We formu-

late the non-local reflectance constraint based on the assump-

tion that superpixels with similar chromaticity values have

similar reflectance. Similar assumptions have been employed

in several previous works [5, 16, 6]. The difference lies in that

we construct the non-local correlation from both intra-images

and inter-images. Specifically, we formulate the non-local s-

parse representation as a L0 minimization problem, which is

defined on the set of superpixels from two images of a pair.

The definition of Er(R) is presented in Section 3.3.

Brightness scale constraint. To disambiguate the scale

problem where I = S + R and I = (S − d) + (R + d)
are both the solutions, we demand the brightest pixels to have

unit shading magnitude 1. Since log 1 = 0, the brightness

scale constraint is defined as:

Ee(M) =
∑

k

∑

p∈Γk

(Mk
p )

2, (6)

where Γk
i is the set containing the brightest pixels in image Ik.

Here, We choose the brightest pixels by comparing intensity

values from both images.

Closed form optimization Clearly, our energy function

E(le,M,R) is a well-defined quadratic function, including

shading magnitude Mp for each pixel p, superpixel level re-

flectance Ru for each superpixel u, and environment lighting

le from two images. Following the similar idea in [6], the

quadratic function has a unique global minimum that can be

solved by the conjugate gradient algorithm.

3.3. Non-local L0 sparse reflectance constraint

Let U denote the set of superpixels combined from both im-

ages. For each superpixel u, we construct the sparse repre-

sentation by solving the following L0 minimization problem:

min
αu

‖fu −Du · αu‖, s.t. ‖αu‖0 ≤ Z. (7)

Here, fu is the feature of superpixel u, elaborated later. The

sparse dictionary Du is define as:

Du = [f1, . . . , fu−1, fu+1, . . . , f|U|], (8)

where |U| denotes the set size of U . The parameter αu ∈
R

|U|−1 is the coefficient vector for sparse representation of

fu over Du. The L0 norm |αu|0 computes the number of



Fig. 2. Significant reflectance correlations. Red and yel-

low lines indicate reflectance constraints within an image and

across images.

non-zero coefficients. Z controls the representation sparsity,

which is set as Z = 50 in our experiments.

After solving the minimization problem using OMP algo-

rithm [18], the non-zero components of αu can be taken as

the correlation weights between superpixel u and its corre-

spondent superpixels within two images. Fig. 2 demonstrates

the top 5 percents of correlations for a pair of images. Ac-

cordingly, we define Er(R) as the following:

Er(R) =
∑

u

∑

v,αu(v)�=0

αu(v)
2(Ru −Rv)

2, (9)

where αu(v) is one element of αu, representing the correla-

tion between superpixels u and v.

An important issue in the above L0 minimization is the

representation of the feature vector fu of superpixel u. In

our paper, we adopt a histogram-based feature representation.

Specifically, we first perform K-means clustering on the chro-

maticity values of all pixels from the two images to find J
clusters. For each superpixel, we construct a J-dimensional

histogram hu. An element hu(j) represents how many pix-

els within a specific superpixel belong to the j-th cluster. hu

is normalized by dividing the pixel number of the superpix-

el. We then employ cosine-similarity to measure the distance

between two feature vectors.

4. EXPERIMENTAL RESULTS

To evaluate the proposed method, we collected testing image

pairs from MFC dataset [10, 9, 19]. The two images in a given

image pair have visually apparent illumination changes. We

compare our method with two state-of-the-art single image

intrinsic decomposition methods, i.e. the close-formed solu-

tion [6] and optimization-based solution [4]. The two meth-

ods are performed separately on the two images of a pair.

The comparison results are demonstrated in Fig. 1, Fig. 3

and Fig. 4. Obviously, single image decomposition methods

can not get consistent reflectance values for the common fore-

ground in the image pairs. For example, when using [6], the

doll looks more bright red in the first image, yet dark red in

the other image (Fig. 3). Also see the red regions in Fig. 3,

where the tower’s reflectance is more brightish than that of the

symmetric one. Even within a single image, the two methods

under comparison may still be insufficient to generate con-

sistent reflectance for distant correlated objects. As for [4],

since it does not directly constrain distant pixels, the shading

and shadow effects can be remained on the reflectance image

(see the regions pointed by the yellow arrows in Fig. 4). Al-

though Zhao et al. [6] constructed non-local reflectance con-

straint between distant pixels, they only considered textured

pixels. Hence, it may not work very well for objects with uni-

form colors (see Fig. 1 where the reflectance of the kite’s head

suffers from the lighting effect). Instead, we use chromaticity

feature to construct non-local reflectance correlation directly.

As our results show, we can eliminate the shadow and make

distant pixels share much consistent reflectance values, within

and across a pair of images.

Next, we quantitatively evaluate the results by computing

the similarity of the same foreground objects in the reflectance

images for each method. We construct a histogram to repre-

sent the foreground reflectance for one image, and measure

the cosine-similarity between two images. Here, we quan-

tize each RGB channel to M bins, and the histogram is a

M3-dimension vector after normalization. Table 1 lists the

similarities of different methods. We can see that our method

achieves the highest similarities for all testing images.

We validate the benefit of our co-intrinsic decomposition

in image co-saliency detection task. Fig. 5 shows the co-

saliency results by the method of [12] on original image pairs

”Doll”, and our reflectance image pair. From the result, we

can clearly see that the jointly extracted reflectance images

enable more complete and consistent co-saliency detection re-

sult. The right chart is the average precision, recall and F1-

measure value on all image pairs.

Table 1. The similarity of the same foreground reflectance

values in an image pair.

Methods in [6] Methods in [4] Our Method

Kite 7.348e-04 9.657e-04 0.3043

Doll 1.685e-04 0.0019 0.0518

St Basile 0.0135 0.0058 0.0334

Bucky 0.0112 0.0152 0.0337

5. CONCLUSIONS

In this paper, we address co-intrinsic images decomposition,

a new problem that performs intrinsic decomposition on a

pair of images simultaneously. Different from registered im-

ages decomposition, the images in a pair share the same

foreground yet with arbitrarily different illuminations, view-

points, and backgrounds. As the first attempt to this prob-



(e)(c)(a) (d)(b)

Fig. 3. (a) Input image pairs ”Doll” and ”St Basile”. (b)-(c) Reflectance and shading images by the method in [6]. (d)-(e)

Reflectance and shading images by our method
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Fig. 5. Co-saliency detection result on the original image pair

”Doll” and our reflectance image pair.

lem, we propose an effective approach using unsupervised

non-local L0 reflectance sparsity at super-pixel level. To ac-

count for the global change of color tones in two images, we

extend intrinsic model to a unicolor lighting-based intrinsic

model. We then propose a co-Retinex model that constrain-

s local and non-local pixels/superpixels from both intra- and

inter-images. By combining the set of superpixels from two

images, we can derive non-local reflectance correlation with-

in and across images in a uniform manner. The effectiveness

of the proposed approach is validated through experiments on

co-intrinsic images decomposition and further co-saliency or

co-foreground detection.
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