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Abstract—Predicting human pose in the wild is a challenging
problem due to high flexibility of joints and possible occlusion.
Existing approaches generally tackle the difficulties either by
holistic prediction or multi-stage processing, which suffer from
poor performance for locating challenging joints or high com-
putational cost. In this paper, we propose a new Hierarchical
Contextual Refinement Network (HCRN) to robustly predict
human poses in an efficient manner, where human body joints
of different complexities are processed at different layers in
a context hierarchy. Different from existing approaches, our
proposed model predicts positions of joints from easy to difficult
in a single stage through effectively exploiting informative con-
texts provided in the previous layer. Such approach offers two
appealing advantages over state-of-the-arts: (1) more accurate
than predicting all the joints together and (2) more efficient
than multi-stage processing methods. We design a Contextual
Refinement Unit (CRU) to implement the proposed model, which
enables auto-diffusion of joint detection results to effectively
transfer informative context from easy joints to difficult ones.
In this way, difficult joints can be reliably detected even in
presence of occlusion or severe distracting factors. Multiple
CRUs are organized into a tree-structured hierarchy which
is end-to-end trainable and does not require processing joints
for multiple iterations. Comprehensive experiments evaluate the
efficacy and efficiency of the proposed HCRN model to improve
well-established baselines and achieve new state-of-the-art on
multiple human pose estimation benchmarks.

Index Terms—Human Pose Estimation, Joint Complexity-
Aware, Hierarchical Contextual Refinement Network.

I. INTRODUCTION

HUMAN pose estimation aims to generate joint config-
urations of human body from a single image. It is a

fundamental task in computer vision, with wide application in
AR/VR [1], [2], gaming [3], human computer interaction [4],
and human behavior analysis [5], [6], [7]. In literature [8],
[9], [10], [11], [12], efforts have been made to tackle various
challenges in human pose estimation, e.g., high degree of
freedom articulations, view-point changes, occlusion, self-
similarities and large pose and appearance variations.

Despite significant progress made by those approaches,
some challenges have not been well addressed. One of them is
from the heterogeneous flexibilities and complexities of human
body joints. For example, as shown in Fig. 1 (a), neck and
head top of human body are relatively easier to estimate than

X. Nie, J. Feng, and S. Yan are with the Learning and Vision Lab, ECE
Department, National University of Singapore, Singapore 117583. S. Yan is
also with Qihoo 360 AI Institute, China. E-mail: niexuecheng@u.nus.edu,
elefjia@nus.edu.sg and yanshuicheng@360.cn

J. Xing is with National Laboratory of Pattern Recognition, Institute of Au-
tomation, Chinese Academy of Sciences, China. E-mail: jlxing@nlpr.ia.ac.cn

S. Xiao is with Artificial Intelligence Institute at Qihoo 360 International.
E-mail: xstgavin124@gmail.com

Layer 1: 

Layer 2: 

Layer 3: 

Layer 4:

Neck

Head, shoulder, hip

Wrist, ankle

Elbow, knee
(b)

(a)

(  )c

Fig. 1. (a) Example images from LSP dataset showing various complexities
of body joints. (b) The proposed complexity-aware hierarchy of body joints.
Body joints are divided into four layers according to their complexities. (c)
Left: initial heatmap of left ankle. Middle: heatmap of left knee providing
clues for localizing left ankle. Right: refined heatmap of left ankle. The
proposed approach can use contextual information from easier joints to guide
the estimation of more difficult joints in a single stage.

other parts due to their lower degrees of freedom and strong
discriminative characteristics. Comparatively, wrist and ankle
are much more difficult because of higher degrees of free-
dom, occlusion, and ambiguities. Most existing approaches,
however, ignore the difference of such joint complexities and
stick to dealing with all joints together in a holistic way, thus
the difficult joints may contaminate and then degrade their
performance. Based on this observation, to further improve
the performance of human pose estimation, we propose to
explicitly take the complexities of joints into consideration to
avoid the above problem encountered by holistic approaches.

In particular, we propose to divide the huge space of
possible joint configurations of human body into smaller ones
according to the joint complexities. With this divide-and-
conquer strategy, estimation can be performed for joints within
each smaller space alternatively. With such motivation, we
devise a complexity-aware hierarchical model that distributes
body joints into different layers according to their complexi-
ties. In the proposed hierarchy, easy joints are estimated first
and difficult ones are addressed later utilizing the estimation
results for easier ones. Specifically, all body joints are divided
into 4 layers as shown in Fig. 1 (b). Layer 1, acting as the root
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of the proposed hierarchical model, only includes neck which
is generally believed to be the easiest joint to localize. Layer
2 includes 5 joints, i.e., head, left/right shoulder and left/right
hip, which are of slightly greater flexibility. Left/right elbow
and left/right knee are put at layer 3. Layer 4 contains left/right
wrist and left/right ankle, which are the most difficult joints for
estimation. The intuition behind such a division of body joints
is based on the degree of freedom from kinematics of human
pose [13] and appearance discrimination. This way can help
mitigate negative effects of difficult joints upon the estimation
of easy ones. It can also alleviate estimation difficulties in the
smaller joint configuration space. Moreover, our complexity-
aware hierarchical model can be adapted to different body joint
annotations, e.g., it can utilize the skeleton definition proposed
by [14] if one dataset provides the torso center annotation.

In addition to the complexity dependence within a layer
of the proposed hierarchical model, articulated body joints
in neighboring layers are also closely correlated spatially.
Our key observation is that easy joints can provide useful
contextual information for localizing difficult ones. As shown
in Fig. 1 (c), the left image shows a wrongly estimated
heatmap for left ankle due to its ambiguity with right ankle; the
middle image is the correctly estimated heatmap for left knee.
Because of the close spatial correlations, left knee can provide
informative guidance to refine the heatmap of left ankle into a
correct one as shown in right image in Fig. 1 (c). The refine-
ment process can be conducted recurrently from easy joints
to difficult ones. Whereas, current approaches often adopt
stacked or iterative multi-stage networks for heatmap reuse to
implicitly explore contextual information, e.g. Convolutional
Pose Machine [12], Iterative Error Feedback [15] and Chained
Prediction Model [16], resulting in low efficiency, massive
auxiliary parameters or suffering from error accumulation.

Motivated by this, we propose a new Contextual Refinement
Unit (CRU) to effectively aggregate contextual information
provided by easy joints and help estimate difficult ones and
generate more accurate heatmap for each body joint. We
organize multiple CRUs into a tree-structure to capture various
joint complexities and form the Hierarchical Contextual Re-
finement Network (HCRN) for efficient human pose estimation
layer-by-layer. In stark contrast with the iterative refinement
or chain models [12], [15], [16], HCRN can accurately predict
joint locations within only one stage, benefiting from the
layered structure and the proposed CRU.

We use a front-end Convolutional Neural Network (CNN)
to learn deep representations, which is integrated with the pro-
posed HCRN model into a unified framework for end-to-end
training and inference. Extensive experiments on benchmarks
LSP [17], FLIC [18], MPII Human Pose Single-Person [19]
and MSCOCO [20] have shown superior performance and
efficiency of the proposed HCRN model. Our contributions
can be summarized into three aspects: 1) We propose a
principled way to deal with heterogeneous complexities of
human body joints. 2) We introduce a new neural network unit,
called the CRU, which can effectively integrate and exploit
spatial contextual information from well-estimated joints. 3)
We propose a Hierarchical Contextual Refinement Network
that consists of stacked CRUs with a tree-structure. We apply

it to address human pose estimation problem, achieving su-
perior performance and high efficiency over well-established
baselines and new state-of-the-art.

II. RELATED WORK

In literature, human pose estimation in monocular images
has been heavily relied on pictorial structure model. [21] and
[22] have adopted this model via constructing an undirected
graph where nodes represents joints and edges their relation-
ships. Later, [23] introduced poselets to encode high-order
joint dependencies. [24] exploited deformable part models for
articulated human detection and pose estimation. [25] and
[26] utilized loopy constraints to address the double-counting
problem encountered with tree-structure models. However,
they are severely limited with hand-craft features, such as
SIFT, HOG, etc. Recently, Convolutional Neural Networks
(CNNs) have been used to replace hand-crafted features with
deep learned ones, significantly pushing the frontier of human
pose estimation and becoming the dominant stream.

Existing CNN based approaches can be roughly divided into
two categories: CNN with classification model and CNN with
regression model. CNN with classification model approaches
predict the confidence maps, which indicates probabilities of
body joints presenting at each position in the images. Follow
this strategy, [27], [11], [28], [29] have integrated CNNs
with graphical models, e. g., [11] has proposed a spatial-
model to mimic Markov Random Field (MRF) loopy belief
propagation. [30] has presented a two-stage cascaded CNN
architecture, which first outputs part detection heatmaps to
provide part attention and contextual information and then
performs part regression to predict the part location in the
image. [31] has presented a CNN based recurrent model
for iteratively increasing the receptive field of the network
via combining the intermediate feature representations to
learn contextual information and improve the final heatmap
predictions. In [32], Chu et al. have proposed to integrate
CNN with a multi-context attention mechanism for human
pose estimation, through generating heatmaps from features
at multiple resolutions with various semantics to keep global
consistency of full human body and local accuracy of single
body joints. In [33], Chen et al. has exploited the adversarial
training strategy via introducing a discriminator to implicitly
constrain poses from the generator.

The CNN with regression model approaches solve human
pose estimation by directly regressing the joint positions or
the offsets between the initial positions of joints and the
ground truth positions. To solve the highly non-linear mapping
problem involved in the regression, CNN with regression
model approaches often use an iterative updating mechanism
to progressively reduce the regression error and get closer to
ground truth. For such iterative regression approaches, at each
iteration they estimate the corrections that should be made on
current predictions to reduce the difference from the ground
truth. Then the correction parameters are added to current
predictions to refine the estimation results. For instance, Liu et
al. [34] have presented a three-stage cascaded CNN framework
for human pose estimation via predicting the coarse-level
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Fig. 2. Overview of the proposed approach. (a) The input image. (b) A front-end CNN for learning representations of body joints. (c) The proposed Hierarchical
Contextual Refinement Network for estimating human pose sequentially layer-by-layer according to the complexities of joints, from easy to difficult. (d) The
generated joint-specific heatmaps. (e) The final estimation results.

joint locations in the first stage and then estimating joint
offsets to groundtruth in the following two stages to refine the
joint locations. Recurrent Neural Networks (RNNs) [35], [9],
especially Long-Short Term Memory (LSTM) [36], [37], [38],
have been used to directly model the connections between each
iteration. In [39], Belagiannis et al. have proposed a robust
optimization scheme to utilize the Tukeys weight function as
loss instead of L2 loss for CNN models to improve regression
accuracy via considering outliers in training samples.

Different from those approaches which holistically classify
or regress all joints together, in this work we propose to esti-
mate human body joints layer-by-layer sequentially according
to their complexities, and exploit results from an easy layer
for getting effective guidance for estimation of joints in a
more difficult layer. This approach can simplify the estimation
process and improve the performance substantially.

Some existing works also consider structuring human body
parts. However, the existing hierarchical models for human
pose estimation construct part correlation structures according
to some simple clues, e.g., scales and sizes. For instance,
Sun et al. [40] have represented human body as a collection of
parts from coarse-to-fine, where fine-level child joints are spa-
tially connected to their coarse-level parent joints, such as the
relationships between upper/lower arm and entire arm. Then,
they formulate the parent-children relationships recursively to
model the consistency of whole body configurations. Similarly,
Tian et al. [41] have proposed a hierarchical model by dividing
human body into five parts consisting of primitive joints. They
built pairwise relations between nearby parts and joints, result-
ing in a tree-structure model. Then the objective function is
formulated as MRF model and solved by the message passing
algorithm. In [42], Ionescu et al. have proposed to generate
joint descriptors for 3D human pose estimation based on
2D body part annotations via performing second-order label-
sensitive pooling over region hierarchies, where the coarsest
level contains a region for the entire body and the finest
level has different regions for each body part. Although this
kind of hierarchical model can simplify joint detection based
on guidance from large parts, it does not build correlations

among joints directly or deal with complexities of different
joints explicitly. Fan et al. [14] have proposed the pose
locality constrained representation to improve 3D human pose
estimation from monocular images via hierarchically dividing
human pose space into low-dimension spaces using subspace
clustering to explicitly encourage pose locality in human-body
modeling, whereas, ignoring complexity differences of joints.
Gkioxari et al. [16] have proposed a chained prediction model
to sequentially estimate joints according to their complexities.
However, their approach requires to exploit CNNs multiple
times for estimating all joints, leading to accumulation of
prediction error during the iterative propagation process.

In hand pose estimation, hierarchical models formulated
according to joint complexities have been widely used. Sun et
al. [43] have proposed a hierarchical model to estimate hand
pose sequentially. They first estimate the location of palm, the
easiest joint to predict, then fix the location of palm and used
the palm information to guide estimation of more complex
fingers. Tang et al. [44] have proposed to regress hand pose
progressively in four layers from wrist, metacarpophalangeal,
proximal interphalangeal, to distal interphalangeal and tips,
according to the complexities of different joints. Estimation
results from one layer can help simplify estimation of joints in
the next layer. Ye et al. [45] also have proposed a hierarchical
approach for hand pose estimation combining discriminative
approach and generative approach, where the whole hand is
divided into four layers from palm to tips. With the spatial
attention mechanism, they divide both input and output spaces
into hierarchies. In each layer, cascaded CNNs are used to esti-
mate the joints progressively. Results from prior layers reduce
the search space of next layers. Comprehensive experiments
conducted by these methods have shown superior performance
of a hierarchical model than the traditional holistic estimation.
Motivated by previous works, we propose a new complexity-
aware hierarchical model for human pose estimation. It is
formulated according to the complexity of a single joint, and
can explicitly model the relationships between joints, rather
than compositions of joints utilized in [40] and [41] that
implicitly model such relationships.
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Fig. 3. Illustration of the proposed Contextual Refinement Unit (CRU). (a) The structure of CRU. (b) An example for CRU: 1) the initial heatmap of left
ankle, note that the heatmap is wrongly responded on right ankle; 2) the estimated heatmap of left knee for the given image; 3) the diffused heatmap of left
knee; 4) the concatenated heatmaps; 5) the refined heatmap of left ankle.

III. COMPLEXITY-AWARE HCRNS

A. Model Overview

We propose a Hierarchical Contextual Refinement Network
(HCRN) to localize joints in a complexity-aware way. The
overall architecture of the proposed HCRN for human pose
estimation is shown in Fig. 2. Our goal is to estimate the
positions P = {Pi}Ni=1 of N joints J = {Ji}Ni=1 for the
given human body image I , e.g., Fig. 2 (a). We use Pi to
denote the 2D location of joint Ji, i.e., Pi = (xi, yi). For
joint localization, we first utilize a front-end CNN to learn
discriminative representation from the image, which encodes
the high-level semantic information enabling the following
classifiers to predict probabilities on the presence of body
joints in each location, denoted as F shown in Fig. 2 (b). Then
F is fed into the HCRN to generate heatmaps H = {Hi}Ni=1

for all joints. Each element in one heatmap Hi indicates
the possibility of the corresponding location containing the
i-th joint. The proposed HCRN model estimates location
heatmaps of different joints sequentially from low layers to
high ones according to its internal complexity-aware hierarchy.
The information from easy joints will be utilized for localizing
more difficult ones in the following layer. To fully integrate
the information across layers, we introduce a new Contextual
Refinement Unit (CRU). Intuitively, CRUs refine the initial
heatmaps of difficult joints estimated from F by exploiting
the guidance of contextual heatmaps generated by diffusing
probability in each location of input heatmaps. As shown
in Fig. 2 (c), CRUs are organized into a complexity-aware
hierarchy of human body joints, forming a hierarchical con-
textual refinement network. In this way, HCRN applies CRUs
layer-by-layer recursively to generate heatmaps for all joints
as shown in Fig. 2 (d). The position Pi for joint Ji is localized
by taking the location with the maximum confidence score on
heatmap Hi. Fig. 2 (e) shows the final estimation result for
the given input image. Details of the proposed CRU will be
given in the next subsection.

B. Contextual Refinement Units

The structure of CRU is shown in Fig. 3 (a). It estimates
heatmap H l

i for joint J li in the layer l according to the deep

representation F and the heatmap H l−1
i∗ of the correspond-

ing joint J l−1i∗ in the layer (l−1). For simplicity, we hide
the subscripts in the following specifications. CRU conducts
four steps of calculations to update the estimations on joint
heatmaps which can be expressed as

Ol = σ(W l
O ∗ F +BlO), (1)

Ĥ l−1 = Φ(H l−1), (2)

Cl = Ol ⊕ Ĥ l−1, (3)

H l = σ(W l
C ∗ Cl +BlC), (4)

where ∗ denotes the convolution operator, ⊕ denotes the
concatenation operator, σ(·) is the sigmoid activation function,
and Φ(·) is a probability diffusion function, which will be
detailed below. The CRU is parameterized by W l

O, BlO, W l
C

and BlC that are end-to-end learnable.

Step 1: Heatmap Initialization The first step of CRU de-
fined in Eqn. (1) is to estimate initial heatmap Ol for a joint J l

in layer l. In this step, a 1×1 convolutional operation defined
by parameters W l

O∈Rc×1×1 and BlO∈R1×1×1 is performed
on the input feature map F to generate the dense responses
for joint J l, and c is the channel dimension of F . Then, the
sigmoid operation is performed on the generated response map
to give the initial heatmap Ol. An example of initial heatmap
Ol for left ankle in layer 4 is shown in Fig. 3 (b) 1), from
which one can see that the initial heatmap cannot provide
reliable estimation for left ankle due to the false alarm on right
ankle caused by ambiguities of these two joints of symmetry.

Step 2: Heatmap Diffusion The second step of CRU defined
in Eqn. (2) aims to spread the confidence score of each position
in the heatmap H l−1 from the previous layer to its neighbors,
such that CRU can aggregate contextual information and guide
the estimation of H l. In this step, CRU performs probability
diffusion operation Φ(·) based on deformation information of
H l−1 to generate the diffused heatmap Ĥ l−1. For a pixel P
in H l−1, the probability diffusion operator Φ(·) is defined as

Φ(H l−1(P )) = max
δ∈N

(
H l−1(P + δ)−W l−1

d d(δ)
)
, (5)

where δ = (δx, δy) is the position offset, N = [−r, r]×[−r, r]
is the range of δ defining the fusion field (r = 7 in our
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Fig. 4. Examples of the proposed CRU dealing with various false alarm
situations occurred in initial heatmaps. The first row shows the initial
heatmaps and the second row shows the refined heatmaps. (a) shows the
refinement for heatmap of head through dealing with false alarm caused by
overlapping people. (b) and (c) show refinements for heatmaps of head and
left knee through dealing with false alarms caused by inaccurate estimations,
respectively. (d) shows the refinement for heatmap of left knee through dealing
with false alarm caused by occlusion.

experiments), d(δ) = [δx, δy, δx2, δy2] is the deformation
feature, and W l−1

d is a 4D weight vector. By definition of
Eqn. (5), the score of each location in heatmap H l−1 is spread
to its neighbors according to the deformation features, which
will provide powerful contextual information for the prediction
of H l. This operation is implemented as a probability diffusion
layer in Caffe [46] framework for end-to-end training and
testing. An example of probability diffusion operation is shown
in Fig. 3 (b). Given the heatmap H l−1 of left knee in Fig. 3
(b) 2), after probability diffusion, the diffused heatmap Ĥ l−1

is shown in Fig. 3 (b) 3).

Step 3: Heatmap Stacking The third step of CRU defined in
Eqn. (3) is to stack the initial heatmap Ol with the transformed
heatmap Ĥ l−1, which can be used in the fourth step of CRU
to add the contextual information from Ĥ l−1 to Ol−1 for
estimating H l. This step is implemented by a Concat layer.
An example of stacked heatmaps is given in Fig. 3 (b) 4).

Step 4: Heatmap Refinement The fourth step of CRU
defined in Eqn. (4) is to refine the initial heatmap Ol by
selecting proper contextual information from Ĥ l−1 to generate
the estimation result H l for joint J l in the layer l. This
operation is implemented by a convolutional operation on
the stacked heatmaps Cl followed by a sigmoid operation.
Parameters W l

C∈R2×1×1 and BlC∈R1×1×1 of convolution
can be automatically learned during the training process. An
example of the final estimated heatmap H l for left ankle is
shown in Fig. 3 (b) 5). We can see false alarm for left ankle is
reduced and heatmap is corrected by guidance from left knee.

From the above four steps, CRU can refine the initial
estimation Ol of a difficult joint relying on the contextual
information from an easy joint H l−1. More examples for the
refinement process of CRU are shown in Fig. 4. From the
figure, we can see that the CRU can deal with many false alarm
cases that occur in initial heatmaps caused by overlapping
people, inaccuracy, and occlusion.

C. The Front-End CNN

To learn discriminative representation in the image, we
adopt four different kinds of networks in our experiments:
VGG network with 16 layers (VGG16) [47], Residue network
with 101 layers (Res101) [48], Convolution Pose Machines
with 6 stages (CPM) [12] and Hourglass network with 8 stages
(HG) [10], motivated by the recent progress in deep learning.
We extract the feature F∈Rc×h×w from “fc7” of VGG16,
“res5c” of Res101, and highest-level features of the last stage
of CPM as well as HG, as input to HCRN, respectively, where
c is the dimension of discriminative representation and h and
w are the spatial-size height and width of F . Previous works
have shown that VGG16 and Res101 with stride of 32 pixels
are too coarse to precisely locate joints. Hence, we adopt
the dilation algorithm [49] to reduce the stride to 8 pixels
for improving localization accuracy. We initialize VGG16
and Res101 with ImageNet pretrain models. For CPM and
HG, we follow the same settings as the original papers [12],
[10]. We use Sigmoid activation function on predictions and
cross entropy loss. We add supervision in both the steps of
Heatmap Initialization and Heatmap Refinement of CRU. We
train our model using Caffe [46] with SGD as the optimization
algorithm for VGG16, ResNet101 and CPM based models,
Pytorch with RMSProp [50] for HG based ones.

IV. EXPERIMENTS

We conduct experiments to evaluate the proposed model
on three single-person pose estimation benchmarks LSP [17],
FLIC [18] and MPII Human Pose Single-Person [19], and
one multi-person pose estimation benchmark MSCOCO [20].
Details are illustrated in the following subsections.

A. Experiments on LSP Dataset

We first evaluate our model on the Leeds Sports Pose (LSP)
dataset [17]. It contains 2,000 images about sport activities
with challenging articulations, including 1,000 images for
training and 1,000 images for testing. Each person in the LSP
dataset is roughly 150 pixels in height with full-body anno-
tation of 14 joints. In addition, we also use the Leeds Sports
Pose Extended Training (LSPET) dataset [51] in our training,
which includes 10,000 images collected from Flicrk.com with
the same configurations as the LSP dataset. Therefore, we get
11,000 images for training our model and baselines.

We further augment training data with rotation degrees in
[−40◦, 40◦], scaling with factors in [0.7, 1.3] and horizon-
tally mirror. These training samples are resized and padded
to 368×368 pixels. The target heatmap for each joint is
constructed by assigning a positive label 1 at each location
within 10 pixels to the ground truth, and otherwise a negative
label 0. We also construct a target heatmap for background
to get additional supervision for model training. We train the
network on LSP dataset for 250 epochs in total. We test our
model on 3-scale image pyramids to deal with scale variations
and compare with baselines on the LSP testing set. We use
two widely used metrics, Percentage of Correct Keypoints
(PCK) [52] and Percentage of Correct Parts (PCP) [27] for
evaluation on LSP with both Observer-Centric (OC) [53]
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TABLE I
EXPERIMENTS ON LSP DATASET WITH PCK PC METRIC. THE PERFORMANCE OF OUR PROPOSED MODELS (VGG16-, RES101-, CPM- AND

HG-HCRN), TWO ABLATED VERSIONS (VGG16- AND RES101-HCRN-W/O-DIFFUSION), TWO BASELINES (VGG16- AND RES101-HOLISTIC), AND
STATE-OF-THE-ART MODELS CPM AND HG, ARE PRESENTED FOR COMPARISON.

Methods Head Shoulder Elbow Wrist Hip Knee Ankle Avg Time in secs.

HG-HCRN 97.6 88.0 82.0 76.1 88.5 85.4 82.6 85.7 0.202
HG 97.5 87.7 81.7 75.5 88.2 85.0 82.0 85.4 0.196

Res101-HCRN 96.8 86.8 79.7 75.8 85.7 84.8 80.1 84.2 0.188
Res101-HCRN-w/o-Diffusion 96.4 86.2 79.0 73.7 85.6 83.3 78.6 83.3 0.184
Res101-Holistic 96.3 85.8 78.2 72.1 86.4 82.5 77.5 82.7 0.182

VGG16-HCRN 95.9 85.5 78.0 72.1 82.9 81.3 73.6 81.3 0.067
VGG16-HCRN-w/o-Diffusion 95.5 85.3 77.2 69.7 82.0 80.4 71.1 80.2 0.063
VGG16-Holistic 95.4 85.1 76.5 68.7 81.4 79.7 69.9 79.5 0.061

CPM-HCRN 97.0 87.1 81.1 75.9 87.2 84.5 82.0 85.0 0.283
CPM-6-Stage 96.9 86.7 80.4 74.7 86.7 83.3 80.3 84.1 0.277
CPM-3-Stage 96.7 84.8 78.6 73.5 85.8 82.1 74.8 82.3 0.232
CPM-2-Stage 96.3 83.3 75.8 69.6 82.2 76.0 62.9 78.0 0.220
CPM-1-Stage 93.6 69.7 54.8 53.8 56.3 55.6 52.9 62.4 0.103

TABLE II
COMPARISON OF THE PARAMETER NUMBER OF HCRN AND ONE STAGE

OF CPM.

Methods ParamNum

HCRN 98
One Stage CPM 6,563,712

and Person-Centric (PC) [54] settings. With PCP, a predicted
body part is considered correct if its segment endpoints lie
within 50% of the length of the ground-truth segment from
their annotated location. PCK defines a predicted keypoint
to be correct if it falls within α·max(H,W ) pixels of the
groundtruth keypoint, where H and W are the height and
width of the torso bounding box, respectively, and α controls
the relative threshold for considering correctness, empirically
set as α=0.2. PC and OC indicate two different annotation
settings for defining right and left body parts of persons
in images. PC means that right/left body parts are marked
according to the viewpoint of the person in the image, while
OC the viewpoint of the observer.

Ablation Analysis We first perform ablation analysis of
the proposed model and results are shown in Table I. We
use VGG16-, Res101-, CPM- and HG-HCRN to denote the
proposed hierarchical contextual refinement networks with
different backbones, respectively. We use VGG16-Holistic
and Res101-Holistic to denote the holistic estimation directly
from the front-end CNN. We also compare our model with
CPM and HG, the state-of-the-art models on LSP dataset. We
reimplement CPM and HG based on the codes provided by
the authors, and the performance is very close to the reported
ones in their papers. We compare the performance of different
models under the PCK PC metric. We also list speed for one
inference of these models on a single TITAN X GPU.

From Table I, we can see that with the multi-stage design,
CPM continuously improves its performance when increasing
the number of stages, from 62.4% in the first stage to 84.1%
in the sixth stage. However, the time cost for inference is
almost tripled from 0.103 seconds to 0.277 seconds. The
increment of time cost for CPM to add one more layer is
about 0.013 seconds averagely. In contrast to CPM, the single
stage VGG16-HCRN network achieves much higher accuracy

of 81.3% compared with CPM-1-Stage, with only half of
the time cost. The high efficiency and accuracy of VGG16-
HCRN are from (1) the HCRN component effectively refines
prediction of difficult joints and (2) more efficient network
design that uses smaller kernel size and deeper CNN model.
In contrast, CPM network uses larger kernels in order for
getting sufficiently large receptive fields, which slows down
the inference process. The heatmap diffusion across different
joints within HCRN effectively avoids this inefficient design
by introducing the hierarchical heatmap diffusion. In addition,
we also compare the parameter number of HCRN and one
additional stage of CPM, and results are shown in Table II.
For HCRN, parameters are introduced in the heatmap diffusion
and refinement steps. For each CRU, in heatmap diffusion step,
the parameter number of the deformation weight W l−1

d is 4,
and in heatmap refinement step, the parameter number of W l

C

and BlC are 1×1×2×1=2 and 1, respectively. Therefore, the
total parameter number of HCRN including 14 CRUs for all
body joints is (4+(2+1))×14=98. Comparing with the large
parameter number 6,563,7121 of one stage CPM, the proposed
HCRN is extremely lighter, further verifying its efficiency.

To more clearly see effectiveness of our proposed HCRN,
we compare the performance of VGG16-HCRN with VGG16-
holistic without HCRN. We can see that the performance
is improved from 79.5% (without HCRN) to 81.3% (with
HCRN), while the inference time is only slightly increased
from 0.061 seconds to 0.067 seconds. This clearly shows the
effectiveness and efficiency of the proposed CRU in extracting
contextual information from easy joints to guide the localiza-
tion of difficult ones. Besides, we can see that the proposed
VGG16-HCRN model can achieve comparable results with the
CPM model with two stages, while it only costs 1/3 time. Since
the refinement process of CRU is only applied on the generated
heatmaps, there are fewer parameters to learn and thus the
refinement process is simple and fast. Indeed, CRU improves
the performance on all joints. For instance, the improvement
for head mainly comes from the head top which benefits from
contextual provided by the neck. We observe improvements for

1For the parameter number of one stage to CPM, please refer to the network
architecture in [12] for more details.
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TABLE III
COMPARISON ON DIFFERENT SETTINGS OF CONFIDENCE MAP MODELS

(BINARY AND GAUSSIAN) AND LOSS FUNCTIONS (CROSS ENTROPY AND
L2) WITH THE PROPOSED HCRN ON LSP DATASET.

Methods PCK

Binary Map + Cross Entropy Loss 81.3
Binary Map + L2 Loss 80.4
Gaussian Map + Cross Entropy Loss 79.8
Gaussian Map + L2 Loss 80.9

difficult joints are more significant, e.g., for wrist and ankle
from 68.7% to 72.1% and 69.9% to 73.6%, respectively.

HCRN can work well with advanced CNN architectures.
From Table I, the proposed HCRN model consistently im-
proves the performance of baselines Res101, CPM and HG
models. In addition, we can observe that HCRN helps improve
the accuracies for all kinds of body joints. Moreover, the
improvements on difficult joints are obvious, for example,
CPM-HCRN improves CPM on wrists and ankles from 74.7%
to 75.9% and 80.3% to 82.0% PCK, respectively. Introducing
HCRN only increases the inference time by 0.006 seconds.
These results further demonstrate the effectiveness and ef-
ficiency of our HCRN model to refine the initial heatmaps
produced from state-of-the-art network architectures via inte-
grating and exploiting spatial contextual information from easy
joints to assist estimations of difficult ones.

To verify the efficacy of the heatmap diffusion function
defined in Eqn. (5) in CRU, we perform ablated experiments
via directly concatenating the initial heatmap of one joint with
the heatmap of its articulated neighbor joint in the previous
layer. We evaluated both models with VGG16 and Res101
as the network backbone, denoted as VGG16-HCRN-w/o-
Diffusion and Res101-HCRN-w/o-Diffusion, respectively, in
Table I. We can see removing the diffusion step degrades
the performance of both VGG16 and Res101 based models,
from 81.3% to 80.2% and 84.2% to 83.3% PCK, respec-
tively. In addition, the accuracies of all joints drop, which
demonstrates the effectiveness of the heatmap diffusion step
to spread contextual information of easy joints to guide the
estimation of difficult ones. Moreover, we can also observe
that both VGG16- and Res101-HCRN-w/o-Diffusion improve
the performance of holistic baselines, further verifying benefits
of the proposed hierarchical model via explicitly considering
joint complexities for human pose estimation.

To illustrate the advantage of constructing binary map for
body joints and utilizing cross entropy loss as supervision, we
conduct experiments with VGG16-HCRN to compare with the
commonly used Gaussian maps and L2 loss by state-of-the-
arts models [12], [10] for pose estimation. Results are shown
in Table III. We find that “Binary Map+L2 Loss” outperforms
other settings, including “Gaussian Map+L2 Loss”. The supe-
riority of “Binary Map+L2 Loss” derives from the proposed
hierarchical model individually estimates the location of each
joint, which is better modeled as a binary classification prob-
lem than regression and easier to learn than Gaussian maps
with soft labels.

Comparison with State-of-the-arts We also compare our
model with state-of-the-arts and show results in Table IV
and Table V. From Table IV, we can see that Res101-

TABLE IV
EXPERIMENTS ON LSP DATASET WITH PCK OC METRIC. THE

PERFORMANCE OF OUR PROPOSED MODEL RES101-HCRN AND
STATE-OF-THE-ARTS ARE PRESENTED FOR COMPARISON.

Methods Head Sho. Elb. Wri. Hip Knee Ank. Avg

Res101-HCRN 96.7 91.8 82.6 75.2 92.2 88.8 84.2 87.4

Chu et al. [55] 93.7 87.2 78.2 73.8 88.2 83.0 80.9 83.6
Yang et al. [29] 90.6 89.1 80.3 73.5 85.5 82.8 68.8 81.5
Chen & Yuille [27] 91.5 84.7 70.3 63.2 82.7 78.1 72.0 77.5
Ouyang et al. [56] 86.5 78.2 61.7 49.3 76.9 70.0 67.6 70.0

TABLE V
EXPERIMENTS ON LSP DATASET WITH PCK PC METRIC. THE

PERFORMANCE OF OUR PROPOSED MODELS RES101-, CPM- AND
HG-HCRN, AND STATE-OF-THE-ARTS ARE PRESENTED FOR

COMPARISON.

Methods Head Shoulder Elbow Wrist Hip Knee Ankle Avg

HG-HCRN 97.6 88.0 82.0 76.1 88.5 85.4 82.6 85.7
CPM-HCRN 97.0 87.1 81.1 75.9 87.2 84.5 82.0 85.0
Res101-HCRN 96.8 86.8 79.7 75.8 85.7 84.8 80.1 84.2

Wei et al. [12] 96.9 86.7 80.4 74.7 86.7 83.3 80.3 84.1
Rafi et al. [57] 95.8 86.2 79.3 75.0 86.6 83.8 79.8 83.8
Yang et al. [29] 90.6 78.1 73.8 68.8 74.8 69.9 58.9 73.6
Chen & Yuille [27] 91.8 78.2 71.8 65.5 73.3 70.2 63.4 73.4
Carreira et al. [15] 90.5 81.8 65.8 59.8 81.6 70.6 62.0 73.1
Fan et al. [58] 92.4 75.2 65.3 64.0 75.7 68.3 70.4 73.0
Tompson et al. [11] 90.6 79.2 67.9 63.4 69.5 71.0 64.2 72.3

(a) (b)

Fig. 5. Pose estimation results over all PCK thresholds on LSP dataset. (a)
is for Observer-Centric. (b) is for Person-Centric.

HCRN already achieves highest 87.4% PCK on LSP dataset
with Observer-Centric, significantly outperforming previous
best [55] with 83.6% PCK. In addition, our model achieves
the best results for all joints under PCK OC metrics

Table V shows the comparisons with state-of-the-arts trained
with LSP and LSPET on PCK PC metric. We can see that
HG-HCRN sets new state-of-the-art 85.7% PCK. Moreover,
our single-stage model Res101-HCRN can achieve comparable
performance 84.2% PCK with state-of-the-art 84.1% PCK.
We also show the experimental results with efficient Res101-
HCRN over all PCK thresholds in Fig. 5 to better illustrate its
effectiveness. We compare Res101-HCRN to others with the
best PCK performance under PC and OC settings, respectively.
It can be seen that Res101-HCRN outperforms them w.r.t
all thresholds under PCK OC metric on the LSP dataset,
and achieves comparable results with state-of-the-arts under
PCK PC metric. In Fig. 6, we show estimations for separate
joints in different layers over all thresholds under PCK PC
metric, demonstrating that the proposed model can achieve
comparable performance with state-of-the-arts over all thresh-
olds for all joints. In particular, for shoulder, knee and wrist,
the proposed Res101-HCRN model even achieves slightly
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Fig. 6. Pose estimation results for layers in the proposed HCRN model over all PCK PC thresholds on LSP dataset.

TABLE VI
EXPERIMENTS ON THE LSP DATASET WITH PCP OC METRIC. THE

PERFORMANCE OF OUR PROPOSED MODEL RES101-HCRN AND
STATE-OF-THE-ARTS ARE PRESENTED FOR COMPARISON.

Methods Torso U.Leg L.Leg U.Arm F.Arm Head Total

Res101-HCRN 97.3 90.6 84.0 81.9 65.1 94.2 83.5

Chu et al. [55] 95.4 87.6 83.3 76.9 65.2 89.6 81.1
Yang et al. [29] 96.5 88.7 81.7 78.8 66.7 83.1 81.1
Chen & Yuille [27] 92.7 82.9 77.0 69.2 55.4 87.8 75.0
Ouyang et al. [56] 88.6 77.8 71.9 61.9 45.4 84.3 68.7

TABLE VII
EXPERIMENTS ON THE LSP DATASET WITH PCP PC METRIC. THE
PERFORMANCE OF OUR PROPOSED MODEL RES101-, CPM- AND

HG-HCRN, AND STATE-OF-THE-ARTS ARE PRESENTED FOR
COMPARISON.

Methods Torso U.Leg L.Leg U.Arm F.Arm Head Total

HG-HCRN 98.2 86.8 82.5 78.9 68.7 95.0 82.4
CPM-HCRN 97.3 86.2 81.8 78.1 67.1 94.4 81.7
Res101-HCRN 96.8 86.5 80.7 78.8 67.8 93.7 81.8

Wei et al. [12] 97.1 85.7 81.0 77.8 66.4 94.1 81.3
Rafi et al. [57] 97.6 87.3 80.2 76.8 66.3 93.3 81.2
Yang et al. [29] 95.6 78.5 71.8 72.3 61.8 83.9 74.8
Chen & Yuille [27] 96.0 77.3 72.2 69.7 58.1 85.6 73.6
Fan et al. [58] 95.4 77.7 69.8 62.8 49.1 86.6 70.1
Tompson et al. [11] 90.3 70.4 61.1 63.0 51.3 83.7 66.6

better results than state-of-the-arts, although its architecture
is simpler and it is more efficient.

To further prove the effectiveness of our model, we also
evaluate it under the PCP metric and compare with state-
of-the-arts. Experimental results are summarized in Table VI
and Table VII. From Table VI, we can see that Res101-
HCRN achieves the best overall performance 83.5% on the
LSP dataset under PCP OC metric. We can also observe that
our model achieves the highest scores on all joints except for
the forearm. From Table VII, HG-HCRN sets new state-of-the-
art 82.4% under PCP PC metric, in addition, it also achieves
the best performance for most of joints, except for under legs.

Qualitative Results Qualitative results on the LSP dataset
are given in the top two rows of Fig. 7. We visualize the
localization results of body joints according to the complexity-
aware hierarchy, where joints in the same layer are annotated

TABLE VIII
EXPERIMENTS ON THE FILC DATASET WITH PCK OC METRIC. THE

PERFORMANCE OF OUR PROPOSED MODEL RES101-, CPM- AND
HG-HCRN, AND STATE-OF-THE-ARTS ARE PRESENTED FOR

COMPARISON.

Methods Elbow Wrist

HG-HCRN 99.2 97.3
HG [10] 99.0 97.0

CPM-HCRN 98.1 95.7
CPM [12] 97.6 95.0

Res101-HCRN 97.4 95.1
Res101-Holistic 95.5 93.0

Chen et al. NIPS’14 [27] 95.3 92.4
Tompson et al. CVPR’15 [59] 93.1 89.0
Toshev et al., CVPR’14 [60] 92.3 82.0
Sapp et al., CVPR’13 [18] 76.5 59.1

with the same color. From Fig. 7, we can see our model can
deal with various highly articulated poses, variant orientations,
and overlapping people. It is also robust to the cluttered
background. For example, for the 10th image in the second
row, our model can provide correct pose estimation in presence
of the cluttered tree in the background.

B. Experiments on FLIC Dataset

Frames Labeled In Cinema (FLIC) [18] dataset contains
5,003 images extracted from popular Hollywood movies by a
person detector. Among these images, 3,987 images are used
for training and 1,016 images for testing. Different from LSP,
FLIC dataset only provides 10 upper body joint annotations.
Along with joint locations, torso boxes are also provided in
FLIC dataset. We crop each person from the image based
on the torso box by 3× enlargement. We use similar data
augmentation strategies adopted on LSP dataset to augment
the training samples. Images are also resized and padded into
368 × 368 as input to CNN for both training and testing.
Target heatmaps are generated similarly as in LSP only for the
annotated joints and background. For training and testing on
FLIC, our approach only constructs hierarchies for annotated
joints, which also shows its flexibility by stacking CRUs for
different structures. We use PCK@0.2 with Observer-Centric
to evaluate our approach and compare with state-of-the-arts.
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Fig. 7. Qualitative results on LSP dataset (top two rows) and FLIC dataset (the bottom row). Our model can provide accurate and robust pose estimation
even in some challenging conditions, e.g., cluttered background (the bottom row), extreme poses (the top-left result).

TABLE IX
EXPERIMENTS ON THE MPII DATASET WITH PCKH@0.5 METRIC. THE

PERFORMANCE OF OUR PROPOSED MODEL HG-HCRN AND
STATE-OF-THE-ARTS ARE PRESENTED FOR COMPARISON.

Methods Head Sho. Elb. Wri. Hip Knee Ank. PCKh

HG-HCRN 98.4 96.3 91.7 87.7 90.6 87.4 83.3 91.2

Newell et al. [10] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Bulat & Tzimiropoulos [61] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7
Wei et al. [12] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
Insafutdinov et al. [62] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5
Rafi et al. [57] 97.2 93.9 86.4 81.3 86.8 80.6 73.4 86.3
Gkioxari et al. [16] 96.2 93.1 86.7 82.1 85.2 81.4 74.1 86.1
Hu and Ramanan [63] 95.0 91.6 83.0 76.6 81.9 74.5 69.5 82.4
Tompson et al. [59] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0
Carreira et al. [15] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3
Tompson et al. [11] 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6
Pishchulin et al. [64] 74.3 49.0 40.8 34.1 36.5 34.4 35.2 44.1

Experimental results are shown in Table VIII. We can see
HCRN improves all baseline models Res101, CPM and HG
for both elbows and wrists, further proving the effectiveness
of the proposed CRUs in utilizing contextual information from
difficulty joints. Compared with state-of-the-art methods, HG-
HCRN achieves new state-of-the-art 99.2% and 97.3% PCK
for the elbow and wrist, respectively.

Qualitative results on FLIC are shown in the bottom row
of Fig. 7, in which we only visualize the upper body joints
predicted by our model. It can be seen that our approach is
able to provide accurate and robust pose estimation, even in
challenging conditions.

C. Experiments on MPII Dataset

MPII Human Pose Single-Person (MPII) dataset [19] is a
state-of-the-art benchmark for evaluating human pose estima-
tion algorithms. It contains 19,185 training and 7,247 testing
images in every day human activities, and each people is
annotated with 16 joints. In addition, the scale and center
of each people are also provided. We utilize the provided
scale to resize the training samples to roughly the same

size. Then, we crop each sample from the original image
around the center position. We resize and pad the cropped
samples to 384×384 as input for training our model on MPII
dataset. We also augment the training samples by random
scaling in [0, 7, 1.3], rotation in [−40◦, 40◦] and flipping. The
target heatmaps are constructed by assigning a positive label
1 at each location within 12 pixels to the ground truth, and
otherwise a negative label 0. We use the same strategy adopted
in [59] to split the validation set consisting of 2,958 images
for supervising our training process. We utilize our best model
HG-HCRN to compare with state-of-the-arts on MPII dataset.
The evaluation is based on the official PCKh metric [19],
following conventions.

The experimental results are shown in Table IX. We can see
that the HCRN model improves the performance of baseline
Hourglass network [10] from 90.9% PCKh to 91.2% PCKh,
achieving new state-of-the-art on MPII dataset. In addition,
HCRN improves the performance of most of the joints, except
the ankle. The reason lies in our re-implementation of Hour-
glass network can not achieve same performance of ankles
with the original one. These results evaluate the effectiveness
of HCRN for refining pose estimation results, even of the state-
of-the-art Hourglass model, via considering joint complexities.

Qualitative results on MPII dataset are shown in Fig. 8. We
can observe that our proposed model can deal with various
challenging scenarios, e.g., occlusions (1st example of 1st
row, last example of 2nd row, and examples of 3rd row),
cluttered background (4th row), and large pose variations (last
two rows). These results further verify the effectiveness of our
proposed HCRN model.

D. Experiments on MSCOCO dataset

To further verify the efficacy of our HCRN model, we
conduct experiments on the multi-person pose estimation
benchmark MSCOCO [20], which contains about 60,000
training images with 17 annotated body joints per person.
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Fig. 8. Qualitative results on MPII dataset. The proposed HCRN model can deal with various challenging scenarios, e.g., occlusions (1st example of 1st row,
last example of 2nd row, and examples of 3rd row), cluttered background (4th row), and large pose variations (last two rows).
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TABLE X
COMPARISON WITH STATE-OF-THE-ARTS ON MSCOCO TEST-DEV.

Methods AP Times[s]

OpenPose [65] 0.618 1.24
OpenPose + HG-HCRN 0.625 2.00
MaskRCNN [66] 0.627 0.190
MaskRCNN + HG-HCRN 0.630 0.960

Evaluations are conducted on the test-dev subset, including
roughly 20,000 images, with the official Average Precision
(AP) as metric. Our model is designed for the single-person
pose estimation task, not for multi-person tasks. To extend
the model to the multi-person case for comparison with
state-of-the-arts, we first generate person detections via either
ResNet-50-FPN based MaskRCNN2 or tight bounding boxes
covering individual joints from multi-person pose estimation
results of OpenPose3. Then we perform single-person pose
estimation using the proposed HG-HCRN model for each
person detection individually. Here, HG-HCRN is followed
the same setting as on MPII, i.e. using 8-stack Hourglass
network as backbone, resizing and padding the cropped images
as 384×384 as input, and performing 3-scale testing. Results
are shown in Tab. X.

We can observe that the proposed HG-HCRN improves
OpenPose from 61.8% AP to 62.5% AP. In addition, “MaskR-
CNN + HG-HCRN” achieves 63.0% AP, outperforming
MaskRCNN (62.7% AP) and setting new state-of-the-art. The
results clearly demonstrate effectiveness of our HCRN model
for human pose estimation

In terms of speed, “MaskRCNN + HG-HCRN” costs
0.960s for processing one image. It is faster than OpenPose
(1.24s/image) though slower than MaskRCNN due to the extra
HG-HCRN component. In addition, its speed will linearly
decrease when the number of person in a image increases,
since it follows the top-down strategy and needs to run HG-
HCRN for each person bounding box sequentially.

V. CONCLUSION

In this paper, we propose the Hierarchical Contextual Re-
finement Networks (HCRNs) for effectively and efficiently
predicting human body joints from easy to difficult. The
proposed method divides body joints into four layers to
build the joint hierarchy. We also develop a novel Contextual
Refinement Unit (CRU) which enables auto-diffusion of joint
detections results to effectively transfer informative context
from easy joints to difficult ones and is organized according to
the hierarchy to transfer informative context from easy joints
to help localize difficult joints. Combined with a front-end
CNN, the unified framework is end-to-end trainable. Evalua-
tion of the HCRN model on multiple challenging benchmarks
demonstrates HCRN achieves superior performance over both
holistic and multi-stage approaches and offers advantageous
efficiency. In addition, the proposed model also achieves new
state-of-the-art on multiple benchmarks.

2We use the official codes and pre-trained models from the “De-
tectron” repository implemented with caffe2 in the following link:
https://github.com/facebookresearch/Detectron

3We use the codes and pre-trained models implemented with caffe in the
following link: https://github.com/CMU-Perceptual-Computing-Lab/openpose
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[2] S. Obdržálek, G. Kurillo, J. Han, T. Abresch, and R. Bajcsy, “Real-
time human pose detection and tracking for tele-rehabilitation in virtual
reality,” Studies in Health Technology and Informatics, vol. 173, pp.
320–324, 2012.

[3] S.-R. Ke, L. Zhu, J.-N. Hwang, H.-I. Pai, K.-M. Lan, and C.-P.
Liao, “Real-time 3d human pose estimation from monocular view with
applications to event detection and video gaming,” in AVSS, 2010.

[4] D. Zhang and M. Shah, “Human pose estimation in videos,” in ICCV,
2015.

[5] M. Andriluka, S. Roth, and B. Schiele, “Monocular 3d pose estimation
and tracking by detection,” in CVPR, 2010.

[6] C. Wang, Y. Wang, and A. L. Yuille, “An approach to pose-based action
recognition,” in CVPR, 2013.

[7] K. Yamaguchi, M. H. Kiapour, L. E. Ortiz, and T. L. Berg, “Parsing
clothing in fashion photographs,” in CVPR, 2012.

[8] V. Ferrari, M. Marin-Jimenez, and A. Zisserman, “Progressive search
space reduction for human pose estimation,” in CVPR, 2008.

[9] A. Haque, B. Peng, Z. Luo, A. Alahi, S. Yeung, and L. Fei-Fei, “Towards
viewpoint invariant 3d human pose estimation,” in ECCV, 2016.

[10] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” in ECCV, 2016.

[11] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training
of a convolutional network and a graphical model for human pose
estimation,” in NIPS, 2014.

[12] S. E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional
pose machines,” in CVPR, 2016.

[13] K. M. Knutzen, Kinematics of human motion. Wiley Online Library,
1998.

[14] X. Fan, K. Zheng, Y. Zhou, and S. Wang, “Pose locality constrained
representation for 3d human pose reconstruction,” in ECCV, 2014.

[15] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik, “Human pose
estimation with iterative error feedback,” in CVPR, 2016.

[16] G. Gkioxari, A. Toshev, and N. Jaitly, “Chained predictions using
convolutional neural networks,” in ECCV, 2016.

[17] S. Johnson and M. Everingham, “Clustered pose and nonlinear appear-
ance models for human pose estimation,” in BMVC, 2015.

[18] B. Sapp and B. Taskar, “Modec: Multimodal decomposable models for
human pose estimation,” in CVPR, 2013.

[19] M. Andriluka, P. Leonid, G. Peter, and B. Schiele, “2d human pose
estimation: New benchmark and state of the art analysis,” in CVPR,
2014.

[20] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in ECCV, 2014.

[21] P. F. Felzenszwalb and D. P. Huttenlocher, “Pictorial structures for object
recognition,” International Journal of Computer Vision, vol. 61, no. 1,
pp. 55–79, 2005.

[22] M. Andriluka, S. Roth, and B. Schiele, “Pictorial structures revisited:
People detection and articulated pose estimation,” in CVPR, 2009.

[23] L. Pishchulin, M. Andriluka, P. Gehler, and B. Schiele, “Poselet condi-
tioned pictorial structures,” in CVPR, 2013.

[24] Y. Yang and D. Ramanan, “Articulated pose estimation with flexible
mixtures-of-parts,” in CVPR, 2011.

[25] M. W. Lee and I. Cohen, “Proposal maps driven mcmc for estimating
human body pose in static images,” in CVPR, 2004.

[26] S. Ioffe and D. A. Forsyth, “Probabilistic methods for finding people,”
International Journal of Computer Vision, vol. 43, no. 1, pp. 45–68,
2001.

[27] X. Chen and A. L. Yuille, “Articulated pose estimation by a graphical
model with image dependent pairwise relations,” in NIPS, 2014.

[28] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka,
P. Gehler, and B. Schiele, “Deepcut: Joint subset partition and labeling
for multi person pose estimation,” in CVPR, 2016.

[29] W. Yang, W. Ouyang, H. Li, and X. Wang, “End-to-end learning of
deformable mixture of parts and deep convolutional neural networks for
human pose estimation,” in CVPR, 2016.

[30] A. Bulat and G. Tzimiropoulos, “Human pose estimation via convolu-
tional part heatmap regression,” in ECCV, 2016.



12

[31] V. Belagiannis and A. Zisserman, “Recurrent human pose estimation,”
in FG, 2017.

[32] X. Chu, W. Yang, W. Ouyang, C. Ma, A. L. Yuille, and X. Wang,
“Multi-context attention for human pose estimation,” in CVPR, 2017.

[33] Y. Chen, C. Shen, X.-S. Wei, L. Liu, and J. Yang, “Adversarial posenet:
A structure-aware convolutional network for human pose estimation,” in
ICCV, 2017.

[34] Z. Liu, S. Yan, P. Luo, X. Wang, and X. Tang, “Fashion landmark
detection in the wild,” in ECCV, 2016.

[35] A. Graves, A. R. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in ICASSP, 2013.

[36] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[37] B. X. Nie, P. Wei, and S.-C. Zhu, “Monocular 3d human pose estimation
by predicting depth on joints,” in ICCV, 2017.

[38] A. R. Zamir, T.-L. Wu, L. Sun, W. B. Shen, B. E. Shi, J. Malik, and
S. Savarese, “Feedback networks,” in CVPR, 2017.

[39] V. Belagiannis, C. Rupprecht, G. Carneiro, and N. Navab, “Robust
optimization for deep regression,” in ICCV, 2015.

[40] M. Sun and S. Savarese, “Articulated part-based model for joint object
detection and pose estimation,” in ICCV, 2011.

[41] Y. Tian, C. L. Zitnick, and S. G. Narasimhan, “Exploring the spatial
hierarchy of mixture models for human pose estimation,” in ECCV,
2012.

[42] C. Ionescu, J. Carreira, and C. Sminchisescu, “Iterated second-order
label sensitive pooling for 3d human pose estimation,” in CVPR, 2014.

[43] X. Sun, Y. Wei, S. Liang, X. Tang, and J. Sun, “Cascaded hand pose
regression,” in CVPR, 2015.

[44] D. Tang, J. Taylor, P. Kohli, C. Keskin, T. K. Kim, and J. Shotton,
“Opening the black box: Hierarchical sampling optimization for esti-
mating human hand pose,” in ICCV, 2015.

[45] Q. Ye, S. Yuan, and T. K. Kim, “Spatial attention deep net with partial
pso for hierarchical hybrid hand pose estimation,” in ECCV, 2016.

[46] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in ACM international conference on Multime-
dia, 2014.

[47] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in CoRR, 2015.

[48] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[49] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” in ICLR, 2015.

[50] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
Networks for Machine Learning, 2012.

[51] S. Johnson and M. Everingham, “Learning effective human pose esti-
mation from inaccurate annotation,” in CVPR, 2011.

[52] Y. Yang and D. Ramanan, “Articulated human detection with flexible
mixtures of parts,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 12, pp. 2878–2890, 2013.

[53] M. Eichner and V. Ferrari, “Appearance sharing for collective human
pose estimation,” in ACCV, 2012.

[54] S. Johnson and M. Everingham, “Clustered pose and nonlinear appear-
ance models for human pose estimation,” in BMVC, 2010.

[55] X. Chu, W. Ouyang, H. Li, and X. Wang, “Structured feature learning
for pose estimation,” in CVPR, 2016.

[56] W. Ouyang, X. Chu, and X. Wang, “Multi-source deep learning for
human pose estimation,” in CVPR, 2014.

[57] U. Rafi, I. Kostrikov, J. Gall, and B. Leibe, “An efficient convolutional
network for human pose estimation,” in BMVC, 2016.

[58] X. Fan, K. Zheng, Y. Lin, and S. Wang, “Combining local appearance
and holistic view: Dual-source deep neural networks for human pose
estimation,” in CVPR, 2015.

[59] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient
object localization using convolutional networks,” in CVPR, 2015.

[60] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep
neural networks,” in CVPR, 2014.

[61] A. Bulat and G. Tzimiropoulos, “Human pose estimation via convolu-
tional part heatmap regression,” in ECCV, 2016.

[62] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and B. Schiele,
“Deepercut: A deeper, stronger, and faster multi-person pose estimation
model,” in ECCV, 2016.

[63] P. Hu and D. Ramanan, “Bottom-up and top-down reasoning with
hierarchical rectified gaussians,” in CVPR, 2016.

[64] L. Pishchulin, M. Andriluka, P. Gehler, and B. Schiele, “Strong ap-
pearance and expressive spatial models for human pose estimation,” in
CVPR, 2013.

[65] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d
pose estimation using part affinity fields,” in CVPR, 2017.

[66] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in ICCV,
2017.

Xuecheng Nie received his B.S. and M.Eng. de-
grees in School of Computer Software from Tian-
jin University, Tianjin, China, in 2012 and 2015,
respectively. He is currently a Ph.D. candidate at
Learning and Vision Lab, Department of Electrical
and Computer Engineering, National University of
Singapore, Singapore. His research interests focus
on Computer Vision, Deep Learning, specially at
Human Pose Estimation.

Jiashi Feng received the Ph.D. degree from the
National University of Singapore (NUS) in 2014.
He was a Post-Doctoral Research Follow with the
University of California, Berkeley. He joined NUS
as a Faculty Member, where he is currently an
Assistant Professor with the Department of Electri-
cal and Computer Engineering. His research areas
include computer vision, machine learning, object
recognition, detection, segmentation, robust learning
and deep learning.

Junliang Xing received his dual B.S. degrees in
computer science and mathematics from Xi’an Jiao-
tong University, Shaanxi, China, in 2007, and the
Ph.D. degree in computer science from Tsinghua
University, Beijing, China, in 2012. He is currently
an Associate Professor with the National Laboratory
of Pattern Recognition, Institute of Automation, Chi-
nese Academy of Sciences, Beijing, China. Dr. Xing
was the recipient of Google Ph.D. Fellowship 2011,
the Excellent Student Scholarships at Xi’an Jiaotong
University from 2004 to 2007 and at Tsinghua

University from 2009 to 2011. He has published more than 70 papers on
international journals and conferences. His current research interests mainly
focus on computer vision problems related to faces and humans.

Shengtao Xiao is currently a Research Scientist in
Artificial Intelligence Institute at Qihoo 360 Interna-
tional. He received his Bachelor and Doctor Degree
from National University of Singapore (NUS) in
2013 and 2018 respectively. His research interest
includes Landmark Detection, Pattern Classification,
and Facial Image Analysis.

Shuicheng Yan is currently the Vice-President and
the Chief Scientist with Qihoo 360 Technology
Company Ltd., and the Head of the 360 Artificial
Intelligence Institute. He is also a tenured Associate
Professor with the National University of Singapore.
He has authored/co-authored over 500 high quality
technical papers, with Google Scholar citation over
25 000 times and an h-index 70. His research ar-
eas include computer vision, machine learning, and
multimedia analysis. He is an IAPR Fellow and
the ACM Distinguished Scientist. His team received

seven times winner or honorable-mention prizes in five years over PASCAL,
VOC, and ILSVRC competitions, which are core competitions in the field of
computer vision, along with over ten times the Best (student) Paper Awards
and especially a Grand Slam with the ACM MM, the top conference in the
field of multimedia, including the Best Paper Award, the Best Student Paper
Award, and the Best Demo Award. He is a TR Highly Cited Researcher of
2014, 2015, and 2016.


